- (d)  $2u^2 \sin{(\alpha + \beta)} \cos{\alpha/g} \cos^2{\beta}$
- (e)  $g \cos \beta/2\mu \sin (\alpha + \beta)$ .
- 10.321. The range of projectile in above case is
  - (a)  $2u \sin{(\alpha \beta)}/g \cos{\beta}$
  - (b)  $2u^2 \sin{(\alpha \beta)} \cos{\alpha/g} \cos^2{\beta}$
  - (c)  $2u \sin{(\alpha + \beta)}/g \cos{\beta}$
  - (d)  $2u^2 \sin{(\alpha + \beta)} \cos{\alpha/g} \cos^2{\beta}$
  - (e)  $g \cos \beta/2u \sin (\alpha + \beta)$ .
- 10.322. The direction of projectile for the range to be maximum on the inclined plane of 30° to horizontal should be
  - (a) 30° with vertical
  - (b) 45° with vertical
  - (c) 60° with vertical
  - (d) 30° with inclined plane
  - (e) none of the above.
- 10.323. Which of the following is not a scalar quantity
  - (a) time
  - (b) money
  - (c) weight of a body
  - (d) body's mass
  - (e) amount of work.
- 10.324. Which of the following is an example of a body undergoing translational equi-
  - (a) a body at rest on a table
  - (b) a body travelling in a circular path at a constant speed
  - (c) a body rotating with a constant angular speed about an axis
  - (d) a body sliding down a frictionless inclined plane
  - (e) a rock thrown vertically upward when it is at the top its path.
- 10.325. The frequency of a vibrating string is
  - (a) directly proportional to square of the tension
  - (b) inversely proportional to square of the tension
  - (c) inversely proportional to the diameter of the string
  - (d) directly proportional to the square root of the mass per unit length
  - (e) inversely proportional to the square root of the mass parameter for unit length.
- 10.326. When two systems are in resonance, then the following parameter for both is equal

- (a) amplitude
- (b) wavelength
- (c) intensity
- (d) frequency
- (e) all of the above.
- 10.327. If a system in equilibrium consists of six equal concurrent coplanar forces, each force acting in a different direction, then the angle between any pair of forces is
  - (a) 30°
- (b)  $45^{\circ}$
- $(c) 60^{c}$
- (d)  $75^{\circ}$
- (e) 90°.
- 10.328. Choose the correct statement
  - (a) no acceleration is produced in the body when it moves with a constant speed along a circle
  - (b) no work gets done on it when it moves with a constant speed along a circle
  - (c) no force acts on the body when the body moves with a constant speed along a circle
  - (d) its velocity remains constant when the body moves with a constant speed along a circle
  - (e) none of the above.
- 10.329. A bucket of water weighing 10 kg is pulled up from a well 20 metre deep by a rope weighing 1 kg/m length, then the work done is
  - (a) 200 kg-m
- (b) 400 kg-m
- (c) 500 kg-m
- (d) 600 kg-m
- (e) none of the above.
- 10.330. A ship will sink if it does not displace water equal to its own
  - (a) volume
- (b) density
- (c) surface area (d) weight
- (e) all of the above.
- 10.331. If the momentum of a given particle is doubled then its kinetic energy will
  - (a) be halved
  - (b) be doubled
  - (c) be quadrupled
  - (d) be same
  - (e) none of the above.
- 10.332. The atmosphere of earth is retained due to
  - (a) gravitational pull of earth
  - (b) outer molecular attraction forces on the molecule

- (c) as a result of cohesion, adhesion, osmosis etc.
- (d) spherical shape of earth
- (e) mean speed of molecules being much less than the escape velocity.
- 10.333. If two bodies, one light and other heavy, have equal kinetic energy, which one has a greater momentum
  - (a) the heavy body
  - (b) the light body
  - (c) both have equal momentum
  - (d) unpredictable
  - (e) none of the above statement is correct.
- 10.334. The sum of kinetic and potential energy of a falling body
  - (a) is constant at all points
  - (b) varies from point to point
  - (c) is maximum at staring and goes on increasing
  - (d) is maximum at starting and then goes on decreasing
  - (e) is maximum at the end.
- 10.335. A 100 kg weight falls 10 cm on a 10 kg/cm spring. The spring will deflect by
  - (a) 10 cm
- (b) 5 cm
- (c) 20 cm
- (d)  $\sqrt{5}$  cm
- (e) 2.5 cm.
- 10.336. Two railway wagons of masses 12 and 10 tonnes moving in the same direction at speeds 3 metres per second and 5 metres per second respectively collide and then move together. Their common speed is given by
  - (a) 3.91 m/sec
- (b) 2.75 m/sec
- (c) 2.2 m/sec
- (d) 4.5 m/sec
- (e) none of the above.
- 10.337. A glass marble drops from a height of 3 metres upon a horizontal floor. If the coefficient of restitution be 0.9, find the height to which it rises after impact
  - (a) 2.43 metre
- (b) 4.43 metre
- (c) 1.22 metre
- (d) 0.61 metre
- (e) none of the above.
- 10.338. A body is fired from point P and strikes at Q inside a smooth circular wall as shown in Fig. 10.32. It rebounds to point S. Coefficient of restitution will
  - (a) 0
- (b) 1

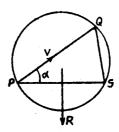



Fig. 10.32.

- $(c) \alpha$
- (d)  $\tan \alpha$
- (e)  $\tan^2 \alpha$ .
- 10.339. The period of oscillation of a simple pendulum depends on
  - (a) mass of bob
  - (b) radius of bob
  - (c) density of bob
  - (d) its effective length
  - (e) all of the above.
- 10.340. A body is vibrating at 10 vibrations/sec in SHM of 10 cm amplitude. The maximum velocity in cm/sec can be
  - (a)  $100 \, \pi$
- (b)  $50 \pi$
- (c)  $200 \pi$
- (d) 100
- (e) 200.
- 10.341. Three perfectly elastic and similar balls are lying on floor. When one is struck with velocity  $\nu$ , it strikes second and onwards third. What will be their resultant velocity at end
  - (a) v
- (b) v/2
- (c) v/3
- (d) v/4
- (e) v/6.
- 10.342 In order to double the period of simple pendulum
  - (a) the mass of its bob should be doubled
  - (b) the mass of its bob should be quadrupled
  - (c) its length should be doubled
  - (d) its length should be quadrupled
  - (e) its length should be halved.
- 10.343 The period of vibration of a pendulum is least at sea level where the latitude is
  - (a) 30°
- (b) 45°
- (c)  $60^{\circ}$
- (d) 90°
- (e) all of the above
- 10.344 Body executing SHM while passing through mean position will have kinetic and potential energies as follows

- (a) maximum, minimum
- (b) minimum, maximum
- (c) zero, maximum
- (d) maximum, maximim
- (e) average, average.
- 10.345. In seconds pendulum, the pendulum executes
  - (a) one beat per second
  - (b) two beats per second
  - (c) ten beats per second
  - (d) half beat per second
  - (e) none of the above is correct.
- 10.346 In case of simple pendulum, the period of one oscillation is given by
  - (a)  $\pi\sqrt{l/2g}$
- (b)  $\pi \sqrt{2l/g}$
- (c)  $2\pi \sqrt{l/g}$
- (d)  $2\pi \sqrt{l/2g}$
- (e)  $2\pi \sqrt{g/l}$ .
- 10.347. In case of S.H.M. the period of oscillation is given by
  - (a)  $T = \frac{2\omega}{\pi^2}$
- $(b) T = \frac{2\pi}{\omega}$
- $(c) T = \frac{\omega}{2\pi}$
- (d)  $T = \frac{\pi}{2\omega}$
- (e)  $T = \frac{\pi}{2\omega}$ .
- 10.348. In S.H.M. the acceleration is proportional to
  - (a) displacement (b) velocity
  - (c) time period
  - (d) effective length of pendulum
  - (e) mass of particle.
- 10.349. In S.H.M. we have conservation of
  - (a) kinetic energy (b) potential energy
  - (c) momentum (d) total energy
  - (e) all of the above.
- **10.350.** The motion of a particle, executing SHM, from one extremity to other constitutes
  - (a) one oscillation
  - (b) two oscillations
  - (c) four oscillations
  - (d) half an oscillation
  - (e) quarter oscillation.
- 10.351. Which one of the following laws is not applicable for a simple pendulum
  - (a) the time period does not depend on its magnitude
  - (b) the time period is proportional to its length (l)

- (c) the time period is proportional to  $\sqrt{l}$ ,
- (d) the time period is inversely proportional to  $\sqrt{g}$ , where g is the acceleration due to gravity
- (e) none of the above.
- 10.352. The value of acceleration due to gravity at moon is g/6, where g is the value of acceleration due to gravity at earth. The value of frequency of oscillation of simple pendulum on moon as compared to earth will be
  - (a) same
- (b) 6 times
- (c) 1/6 times
- (d)  $\sqrt{6}$  times
- (e)  $1/\sqrt{6}$  times.
- 10.353. A body in S.H.M. will have maximum velocity when its amplitude is
  - (a) maximum
- (b) -ve maximum
- (c) zero
- (d) average
- (e) at mid value.
- 10.354. The length of a Second's pendulum is
  - (a) 99.0 cm
- (b) 99.4 cm
- (c) 100 cm
- (d) 101 cm
- (e) 101.10 cm.
- 10.355. A clock with a seconds pendulum is gaining 3 minutes a day. To make it to go correctly
  - (a) length of the pendulum should be increased
  - (b) length of the pendulum should be decreased
  - (c) no change in the length of pendulum is required
  - (d) mass of bob should be increased
  - (e) mass of bob should be decreased.
- 10.356. If G is gauge of the track, v is velocity of the moving vehicle, g is the acceleration due to gravity and r is the radius of the circular path, the amount of super elevation required to the outer rail is
  - (a)  $\frac{gr^2}{Gr}$
- $(b) \frac{Gr^2}{gv}$
- (c)  $\frac{Gr^2}{gv^2}$
- $(d) \frac{Gv^2}{gr}$
- (e) none of the above.
- 10.357. A differential wheel and axle system consists of
  - (a) one big diameter wheel and one axle

- (b) one big diameter wheel and two axles of different diameters
- (c) two big wheels and two axles of different diameters
- (d) two big wheels of different diameters and one axle
- (e) none of the above.
- 10.358. If D be the diameter of wheel and  $D_1$ ,  $D_2$ the diameters of two axles, then velocity ratio is equal to
  - $(a) \ \frac{D}{D_1 D_2}$
  - (a)  $\frac{D}{D_1 D_2}$  (b)  $\frac{D}{2(D_1 D_2)}$ (c)  $\frac{2D}{D_1 D_2}$  (d)  $\frac{2D}{D_1 + D_2}$
- $(e) \ \frac{D}{D_1 + D_2} \, .$
- 10.359. In planetary motion, following parameter remains constant
  - (a) angular velocity
  - (b) linear velocity
  - (c) angular acceleration
  - (d) total angular momentum
  - (e) angular speed.
- 10.360. The escape velocity on the surface of the earth is
  - (a) 1 km/sec
- (b) 3.6 km/sec
- (c) 8.8 km/sec
- (d) 11.2 km/sec
- (e) 14.9 km/sec.
- 10.361. The vehicle moving on a level circular path will exert pressure such that
  - (a) the reaction on the outer wheels will be more
  - (b) the reaction on the inner wheels will be more
  - (c) the reaction on the inner as well as outer wheels will be equal
  - (d) it depends upon the speed
  - (e) none of the above statement is cor-
- 10.362. The maximum efficiency of a screw jack with square threads and friction angle of 30° can be
  - (a) 100%
- (b) 50%
- (c) 33%
- (d) 30%
- (e) 11%.
- 10.363. A machine is said to be irreversible if its efficiency is
  - (a) 100%
- (b) 0%
- (c) 50%
- (d) more than 50%

- (e) less than 50%.
- 10.364. If l is the span of a light suspension bridge whose each cable carries total weight (w) and the central dip is y, the horizontal pull at each support is

- 10.365. Pick up the incorrect statement from the following. In case of a suspension bridge if there is a rise in temperature
  - (a) the dip of the cable will increase
  - (b) the length of the cable will increase
  - (c) the dip of the cable will decrease
  - (d) all of the above
  - (e) none of the above.
- 10.366. The value of gravitation constant G is equal to
  - (a)  $6.66 \times 10^{-8}$
- (b)  $6.66 \times 10^{-3}$
- (c)  $6.66 \times 10^3$
- (d)  $6.66 \times 10^{-10}$
- (e)  $6.66 \times 10^{-11}$
- 10.367. If M be the mass of earth and R its radius then the intensity of gravitational field on the surface of the earth is
- (c)  $\frac{GM}{R^4}$  (d)  $\frac{GR^2}{M}$
- (e)  $\frac{GR}{M^2}$ .
- 10.368. If the speed of rotation of earth decreases, the weight of the body will
  - (a) increase
- (b) decrease
- (c) remain same
- (d) man increase/decrease depending on range of increase
- (e) unpredictable.
- 10.369. Two cars are 10 km apart and moving in the same direction at speed of 40 km/hr. A car moving in opposite direction meets these cars at interval of 8 minutes. At what speed the other car is moving
  - (a) 75 km/hr
- (b) 60 km/hr
- (c) 45 km/hr
- (d) 35 km/hr
- (e) 30 km/hr.